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ABSTRACT: Chemical imaging combines the spatial specificity of
optical microscopy with the spectral selectivity of vibrational spectros-
copy. Mid-infrared (IR) absorption imaging instruments are now able to
capture high-quality spectra with microscopic spatial detail, but the limits
of their ability to resolve spatial and spectral objects remain less
understood. In particular, the sensitivity of measurements to chemical and
spatial changes and rules for optical design have been presented, but the
influence of spectral information on spatial sensitivity is as yet relatively
unexplored. We report an information theory-based approach to quantify
the spatial localization capability of spectral data in chemical imaging. We
explicitly consider the joint effects of the signal-to-noise ratio and spectral
separation that have significance in experimental settings to derive
resolution limits in IR spectroscopic imaging.

■ INTRODUCTION

Spatial resolution in optical microscopy is fundamentally
limited by diffraction, with a spatial cutoff frequency
quantifying the resolution limit. Today, many techniques
have circumvented this classical limit to recognize objects at
much smaller scales.1,2 One set of approaches rely on
attenuating fluorescence emission to narrow the point-spread
function in methods such as stimulated emission depletion
microscopy. Another set of modalities such as photoactivated
localization and stochastic optical reconstruction microscopies
rely on spatial sparsity and temporally separated emissions to
enhance spatial resolution. In these approaches, the underlying
problem of extracting information can be formulated as a
spatial−temporal mapping problem to recognize point objects.
Hyperspectral imaging systems can invoke a different form of
information encoding, namely a spectral−spatial mapping.
Chemical imaging is a class of label-free hyperspectral

imaging techniques that derive contrast from molecular
composition. Molecular vibrational frequencies are coincident
with optical frequencies in mid-infrared (IR), for instance,
resulting in light being quantitatively absorbed proportional to
the concentration of the molecular species present. This
molecular record provides the ability to recognize objects via
analyses of spectral variations within acquired images.3 Spectral
analyses4 in a variety of applications have been conducted with
the simplest and most prevalent configuration of an IR source
and detector, a common motif in spectral recording.5 Much
recent effort has been focused on adding greater molecular
information6−13 and speed,14,15 while the image quality is
commonly accepted to be optimized by following optical
design rules from theoretical models. The emergence of

quantum cascade lasers (QCL) is also challenging the
conventional performance of IR imaging by offering
possibilities for recording and analyses to optimize instrument
capability that go beyond Fourier transform IR imaging
systems.16,17 The speed and signal-to-noise ratio (SNR) trade-
offs in emerging systems are enabling us to ask more
fundamental questions on how data quality, optical config-
uration, and spectral processing may act in concert to
maximize information from chemical imaging.
Modeling the optical resolution limit to account for SNR19

provides a start to understand the limits of IR imaging. The
framework cannot be directly applied to IR imaging, however,
as spectra offer both further possibilities and complications.
Spectral variation has been used to propose computational
methods that realize subdiffraction localization20−27 as well as
provide a cohesive theoretical framework28−33 to understand
image formation in the mid-IR region. However, the
acquisition of high SNR, high optical fidelity data to realize
these ideas has remained challenging. Taking advantage of
QCLs, novel techniques such as balanced detection are now
enabling high-sensitivity measurements that are pushing the
detection limits17,18 for IR spectroscopy. Custom-designed
optical configurations are similarly providing high spatial
fidelity with greatly reduced speckle effects from laser
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coherence.14,15 To systematically take advantage of these
developments for object recognition by molecular means, a
clear definition for achievable resolution is necessary.

■ THEORY
We report a decision-theoretic-based approach that formulates
the two-point resolution limit in terms of the chemical imaging
system’s ability to distinguish two spectrally different samples
at a specific SNR. We seek to provide an analytical relation that
explicitly captures the impact of spectral dependence on the
spatial sensitivity to infer a resolution limit. One advantage of
this treatment is that the idea of resolution can be generalized
beyond the model of separating two-point sources by invoking
the information capacity of the optical system.20 Finally, we
seek to provide an analysis of current performance limits and
propose new benchmarks for future developments that are
experimentally relevant. We do note that there are config-
urations using optical and physical detection mechanisms in
which the IR wavelength is not the primary determinant of
image quality; we do not discuss those systems and point the
reader to theoretical analysis on performance of such
systems.34,35 However, the overall concept of understanding
resolution limits in terms of the IR wavelength and SNR
targeted here will also help understand performance of these
other configurations.
Inspired by the classical resolution limit and decision-

theoretic analysis for nonspectral optical imaging systems,36 we
consider two deterministic objects to be imaged by a spectral
imaging system. Given two-point objects with absorption
spectra A1 and A2 that are separated by spatial distance d, we
establish this problem in terms of total information content
that can be precisely retrieved by the detector (Figure 1). The

imaging data are assumed to be sampled on a m × m × n grid
at coordinates ri = (xi, yi), i ∈ [1, m2] at the detector plane with
a magnification of unity and at spectral bands kj, j ∈ [1, n].
Absorption by point scatterers is manifest in the point

spread function (PSF) of the optical system convolved with the
incident illumination intensity, scaled by the spectral response.
In the paraxial limit for a circular aperture and in the absence
of noise, the recorded data are D (ri, kj ) = A (ri, kj) + ϵ, where

σϵ = × ×I(0, )m m n
2 is approximated by Gaussian-distributed

random variable with standard deviation σ. The mathematical
model is considerably simplified by assuming that each
element of ϵ, ϵij , is statistically independent and identically
distributed. Physically, the recorded data, D, would have
nonlinear contributions from multiple scattering effects and
interactions arising from the incident and scattered fields.
However, these effects can be neglected as a first
approximation for the low-contrast point emitters in

consideration30−32 and for signals dominated by absorption.
The problem of reproducing the original object from a noisy
image can be modeled by using a decision-theoretic
approach19,20,24−27 wherein the task can be formulated as
deciding between two mutually exclusive and exhaustive
hypotheses, 1 and 2, that relate to the presence of two
different objects. Here, we formulate the problem comprising
of two samples, S1 and S2. The null hypothesis, 1, is that S1 is
present, and the alternative hypothesis, 2, is that S2 is
present.
The conditional probability distribution functions for the

recorded data, D, can be analytically described in terms of the
likelihood of these hypotheses as
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where ( )1 is the likelihood that the set of readings D is due
to the presence of S1. Alternatively, the likelihood that the set
of images is due to S2 is
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In the spatial domain, Harris36 showed that the Bayes decision
favoring either of the two hypotheses can be described by a
decision function under these conditions. In the spectral
domain, without regard to the specific structure of the data or
any prior knowledge, we can sum over the entire spectral range
to obtain the decision function. In terms of a log likelihood
ratio (ψ), the decision function is described by
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Note that taking a logarithm or applying any other monotoni-
cally increasing function does not change the statistical
formulation of the decision. Thus, if ψ > 0, then the first
hypothesis 1 is more likely, and if ψ < 0, then the alternate
hypothesis 2 is more likely. Stating this problem as a binary
hypothesis test allows us to formulate the object recognition at
each pixel, ri, as

ψ

ψ

= + ϵ >

= + ϵ <

D A

D A

: : 0

: : 0
1 1

2 2 (4)

Now, the next step is to calculate the probability that the
application of the decision function, ψ, described above will
result in an incorrect or a correct decision. Note that due to
noise, the decision function, ψ, is randomly distributed with
mean μ = ||A2 − A1||2

2 and variance σ0
2 = 4σ2||A2 − A1||2

2. A
major consequence of this formulation is the elegant result that
ψ μ σ∼ ( , )2 , and this distribution is the only information
required to make the optimal decision. For a special case of
nonimaging spectrometer, let Δ denote the normalized
quadratic spectral distance36 given by Δ = ||A2 − A1||2

2.
Figure 2A shows S1 and S2 and their Euclidean distance for

each combination of object pair and measurement system. The
columns correspond to point sources with spectrally distinct

Figure 1. Schematic of a chemical imaging system. Two spectrally
distinct samples, S1 and S2, that are separated by distance d are
imaged. The signal D detected by the detector is mapped on a m × m
× n grid.
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sources. Inset rows in the object’s column show x−y
projections and y−k slices of S1 and S2 for each type of
sample. The quadratic spectral distance calculated at 1730
cm−1 by using a representative hyperspectral imaging case is
shown. The corresponding spectral band is marked on the y−k
projection.
The spectral difference, as quantified by the Euclidean

distance between S1 and S2, is mathematically indistinguishable
from a spatial separation. This property is the key difference
between resolution considerations in chemical imaging and
optical microscopy and motivates the approach here as
computational spectral distinction is the very basis (contrast)
in IR image formation. Assuming equal priors, the chance of
making an incorrect decision if 1 is true (ψ < 0) gives the
probability of error as
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where erfc is the complementary error function. It depends on
the native properties of the materials (Euclidean spectral
distance), spatial distance, and the characteristic of the
measurement (noise). As the emitters become spectrally
distinct, the quadratic spectral distance, Δ, between S1 and
S2 increases, and the probability of error reduces. Likewise, the
probability of error increases as the variance in measurement
(noise) increases. The relationship also implies that collocated
scatterers with identical spectra cannot be distinguished, i.e.,
Perr → 0.5.

■ RESULTS AND DISCUSSION
Now, we cast the problem in the decision-theoretic domain
such that for chemical imaging a minimum separation distance
can then be interpreted as the resolution limit (d̂/λ). We use
the quadratic spectral separation, Δ, between S1 and S2 in the
formulation of spatial resolution. The object information
contained in the acquired far-field intensity image at the
detector is encompassed by the PSF and can be expressed in
terms of the Fisher information, ̂d( ), where d̂ is the estimate
of d. Because image acquisition is typically a Gaussian-noise
dominated process, the Fisher matrix37,38 can be formulated as
follows:

β̂ =d k f d( ) ( NA) ( )j
2

(6)

where β is the normalization constant, NA is the numerical
aperture of the imaging objective lens, Jα is the Bessel function

of order α, and ∫= +
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2 2. The problem of minimizing the

distinguishable distance, i.e., spatial resolution limit for the
imaging system, is equivalent to maximizing the Fisher
information, which is an analytical formulation of the
sensitivity in PSF to the spatial separation. The measurement
D is constrained by the maximum signal power and the
uncertainty in the Euclidean distance, [D2] ≤ I0 (1 + 4Δ2) +
σ2.
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Using a decision-theoretic approach, we can formulate the
variance in the estimate of the variable d in terms of spectral
distance, Δ, as

[ − ̂ ] ≥
+ + Δ

d d( )
1

log 1 SNR(1 4 )
2

2
2

(8)

Combining (6) and (8) and using the Cramer−Rao inequality,
the minimum spatial separation is then bounded by the inverse
of the Fisher information. Parametrically, the lower bound is
achieved for the unbiased estimator of d given by d̂

λ̂ =
+ + Δ

d
NA

1

log 1 SNR(1 4 )2
2

(9)

where λ is the wavelength, the signal-to-noise ratio (SNR) =
I0/σ

2, and NA is the numerical aperture of the system.
Notably, the form of this equation is similar to common

expressions of spatial resolution limits in optical microscopy.
The practical significance of eq 9 can be seen in comparing
simulations of hyperspectral and spectrally insensitive imaging.
Figure 3A shows the predicted minimum resolvable distance,

d̂/λ, as a function of SNR for two different configurations, and
for a NA of 0.4 and 0.9 for each of the two cases. We note a
reduction in d̂/λ by including spectral contrast. Here, we use Δ
= 1 and a SNR of 1−104 as typical values that represent the
absorbance range and ratios of absorbance to baseline noise,
respectively.3 As expected, we observe an improvement in
achievable resolution using a higher NA lens and the addition
of spectral contrast providing information that increases the
ability to distinguish between objects. Notably, spectral data
can provide advantages in maximizing resolution, especially at
low SNR. Next, we examine the joint dependence of d̂/λ on Δ
and SNR in Figure 3B. For our specific case of imaging
spectrally distinct point scatterers, the formalism predicts

Figure 2. (A) Images show the signals produced by the objects, S1
and S2, and their corresponding x−y projections. (B) Spectral distance
at high-contrast spectral band, 1730 cm−1, for hyperspectral imaging
for PEG and PMMA with standard coherent illumination.

Figure 3. (A) Minimum resolvable distance, d̂/λ, is compared for a
hyperspectral and a nonspectroscopic optical imaging system as a
function of SNR and NA. The classical diffraction-limited resolution is
shown as a dashed line. (B) Contour plot showing the variation of the
minimum resolvable distance, d̂/λ, as a function of Δ and SNR, with
the isoline indicating the Rayleigh limit for optical microscopy (red).
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diffraction-limited performance (d̂/λ = 0.61) for SNR values as
low as 10. Our approach specifically deals with chemical
imaging systems with no specialized illumination or post-
processing, where spatial localization is improved by using
spectral content. Our predictions broadly support previous
experimental and theoretical derivations of optimal pixel size
and indicate a likely limit of d̂/λ ∼ 0.10 for most practical SNR
values. Finally, we provide a direct analytical formulation that
relates the resolution and the SNR required to achieve the
enhanced image.
The resolution limit formulation in (9) also provides a

convenient means to visualize the trade-off between spatial and
spectral content as well as the influence of noise, as shown in
Figure 4 by signal distributions in wavelength normalized space
for imaging systems with an illustrative NA of 0.4. Figure 4A
shows the limiting case that corresponds to spectrally
insensitive imaging (i.e., the common optical microscopy
case, where Δ = 0). Along each column, we show
representative simulations for increasing variance (namely, σ2

= 0.001−10) that correspond to a SNR of 1000 to 0.1. The

predicted limits of spatial separation d̂/λ increases as a function
of higher noise (lower SNR), as expected. For each noise
magnitude, the corresponding signals for spectrally distinct
points are shown across the row. Comparing the effects of
spectral content shows that a spectroscopic imaging system (Δ
≠ 0) can achieve the same spatial resolution limits at much
higher noise levels than a spectrally insensitive imaging system
(Δ = 0). Specifically, for Δ = 0.5, σ2 can be up to 2 times
higher or for Δ = 1, σ2 can be up to 5 times higher to achieve
the same performance. Thus, spectral separation not only
enables a higher perceived system resolution limit but also
emphasizes the critical role played by the noise levels. It must
be noted that the higher SNR in spectral systems usually
requires a much greater cost (larger time for acquisition, more
complicated hardware, and needs for handling data), emphasiz-
ing that achieving spectral enhancement of limits is not
without effort. Finally, with a higher NA, a better resolution
limit is expected for each case that scales linearly with 1/NA.
The approach uses the Cramer−Rao lower bound, which is a
weak lower bound, and alternative approaches can establish a

Figure 4. Simulation of the spatial (x−y) signal distributions produced by the objects, S1 and S2, for different spectral separations: (A) Δ = 0
corresponding to optical imaging and (B−F) corresponding to spectral imaging cases. The spectral bands are respectively 1450, 1440, 1010, 1110,
1020, and 1730 cm−1. The noise is simulated for levels indicated to the left of each row.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://doi.org/10.1021/acs.jpcc.2c00740
J. Phys. Chem. C XXXX, XXX, XXX−XXX

D

https://pubs.acs.org/doi/10.1021/acs.jpcc.2c00740?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.2c00740?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.2c00740?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.2c00740?fig=fig4&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://doi.org/10.1021/acs.jpcc.2c00740?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


tighter bound. Alternately, improved estimates of images may
be obtained by using sparse image retrieval and restoration
algorithms such as ref 39 or deep learning methods.40 These
approaches can indeed provide images with sharper detail, but
we emphasize that such reconstructions are still limited in their
uncertainty by the SNR of the recorded data. The goal of this
report is not to discuss the impacts of these computational
super-resolution techniques but to provide a rigorous analytical
formulation for the resolution limit in chemical imaging, on
which further computational enhancements can be made and
one that serves as a baseline performance to evaluate such
efforts.
This study generalizes ideas from optics to chemical imaging

microscopes and can be extended to other emerging
techniques as well as modalities with different mechanisms of
chemical contrast. One exciting new area is the combination of
infrared and optical frequencies to record data by using the
photothermal effect,41−49 for example. The probing wavelength
in these cases is much shorter (typically, visible), which
facilitates submicrometer optical resolution but does not yet
provide the SNR of all-IR laser scanning microscopy.15 Thus,
the optical configuration and measurement quality both
become important to understand limits of performance.
Although we focus on use of a single IR wavelength for
imaging throughout the optical train for simplicity, the
formalism developed here can also be modified to suit these
emerging modalities. The analytical framework can also be
extended to other techniques, including second-order non-
linear spectroscopies such as sum frequency generation
(SFG)50−53 or second-harmonic generation (SHG) micros-
copy,54,55 with an additional constraint on signal localization
arising from the signal origin being from the interfaces.56

For SNR values that have recently become practical, a
hyperspectral configuration is shown to have improved
resolving power compared to a nonspectroscopic design.
Thus, having a good estimate of the system transfer function,
and a sufficient SNR, it is possible to resolve the objects
beyond the classical nonspectral resolution limit. This finding
should spur further investigations into methods to practically
realize these advantages of IR imaging. Similar to other super-
resolution modalities and attempts to increase the resolution
by means of apodization or by inverse filtering and
extrapolation, we emphasize that spectroscopic microscopy
does not surpass the diffraction limit. It enables users to
identify essential information about the probed sample by
acquiring spectral data that yields more information than
microscopic or spectroscopic measurements alone. Combined
with prior information, the spectral dimension can thus be
considered to encode information about the spatial dimen-
sions. The provided analysis should allow an understanding of
this linkage and spur further investigations into the capabilities
of chemical imaging systems.

■ CONCLUSIONS
Chemical imaging measurements enable both a molecular and
an optical probing the sample, thus yielding more information
than optical microscopic or spectroscopic measurements alone.
Combined with prior sample information, the relationship
between the spectral and spatial dimensions can be formulated
as a unified set of information that jointly determines the limits
of performance. Here, we have formulated the joint influence
to test the evidence for one of the two hypotheses that
rigorously evaluates spatial separation between two-point

emitters. We provide a quantitative measure of the likelihood
of accurately identifying two objects in chemical imaging that
depends on the Euclidean spectral−spatial distance in the
sample as well as the noise in the imaging system. This results
in a standard decision-theoretic treatment of resolution that is
influenced explicitly by both optical and spectroscopic quality.
The work should enable a better understanding of the spatial
resolution of molecular composition using concepts that are
traditionally applied to optical microscopy, especially as we
formulate the expression for chemical imaging in the same
form as the more commonly understood spatial resolution
limits for morphological optical imaging.
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