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Abstract

[AQ1]Infrared (IR) spectroscopic imaging instruments’ performance can be characterized and optimized by an analysis of
their limit of detection (LoD). Here we report a systematic analysis of the LoD for Fourier transform IR (FT-IR) and
discrete frequency IR (DFIR) imaging spectrometers. In addition to traditional measurements of sample and blank data, we
propose a decision theory perspective to pose the determination of LoD as a binary classification problem under different
assumptions of noise uniformity and correlation. We also examine three spectral analysis approaches, namely, absorbance
at a single frequency, average of absorbance over selected frequencies and total spectral distance — to suit instruments that
acquire discrete or contiguous spectral bandwidths. The analysis is validated by refining the fabrication of a bovine serum
albumin protein microarray to provide eight uniform spots from ~2.8 nL of solution for each concentration over a wide
range (0.05-10 mg/mL). Using scanning parameters that are typical for each instrument, we estimate a LoD of 0.16 mg/mL
and 0.12 mg/mL for widefield and line scanning FT-IR imaging systems, respectively, using the spectral distance approach,
and 0.22 mg/mL and 0.15 mg/mL using an optimal set of discrete frequencies. As expected, averaging and the use of post-
processing techniques such as minimum noise fraction transformation results in LoDs as low as ~0.075mg/mL that
correspond to a spotted protein mass of ~112 fg/pixel. We emphasize that these measurements were conducted at
typical imaging parameters for each instrument and can be improved using the usual trading rules of IR spectroscopy. This
systematic analysis and methodology for determining the LoD can allow for quantitative measures of confidence in imaging
an analyte’s concentration and a basis for further improving IR imaging technology.
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Introduction

The limit of detection (LoD) is of interest for most analytical
measurements. LoD, typically referring to the lowest con-
centration of a species that can be detected by an instrument
in a typical measurement, combines the ideas of sensitivity,
resolution and confidence in results.'™ Formally, the
International Organization for Standardization (ISO)>¢ and
International Union of Pure and Applied Chemistry (IUPAC)
define the LoD as the smallest concentration that can be
detected with a specified significance level for the analytical
procedure7’8 and can be expressed as

Yo =ys+k-op )

where yp is the smallest detectable concentration of the
analyte, yp is the mean value of the blank measures and G5 is
the standard deviation of the blank measure. yp is typically
estimated from a measured signal, xp, using a calibration
function. Since the absorbance (xp) measured in infrared
(IR) spectroscopy is linearly related to concentration (yp),
the relationship between these quantities is straightforward
and the LoD can be estimated from absorption spectra.
While blank sample measurements can be used to estimate
the detection limit,”™"" with k equal to 2 or 3, this practice
does not shed light on the confidence in results from a
statistical perspective. To combine the concerns of accur-
acy and confidence, distinguishing the blank measure from
the lowest detectable value can be framed as a hypothesis
testing problem wherein a measured value is a binary clas-
sification problem between detected species and blank.
This approach explicitly accounts for both type | (&) and
type Il (B) errors. Commonly used factors for k, for exam-
ple, are 3.0 and 3.3 for a presumed type | error of 1.3% and
0.5%, respectively. While this approach is widely applicaable
and easy to deploy, the underlying assumptions of Gaussian
distributions of measured values and the use of linear cali-
bration curves must be carefully validated. In response to
possible violations of these conditions, nonparametric
approaches have investigated the effects of asymmetric,
non-Gaussian blank distributions and nonlinear calibration
curves for determining LoDs.'? Here, we use both the
measured concentration-signal curves as well as a statistical
approach to understand the LoD for IR imaging
spectrometers.

While the detection limits of Fourier transform IR
(FT-IR) spectrometers are well known,'”™'? recent develop-
ments in quantum cascade laser (QCL)-based IR spectros-
copy and spectroscopic imaging techniques have led to a
renewed interest in detection limits for this new generation
of instruments. Emerging bulk spectrometer designs can
detect concentrations of proteins as low as 0.0025mg/
mL?° and new records for detection limits are being estab-
lished by the use of hardware enhancements such as
balanced detection®®?'  with ppb level detection of
gases.”>?* This progress also bodes well for IR imaging, in
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which ultrasensitive measurements are made even more
challenging due to the signal being recorded from signifi-
cantly smaller volumes of materials with low light through-
put while requiring the use of additional optics and
specialized detectors. IR imaging technology has expanded
and diversified considerably in recent years with improve-
ments in FTIR imaging,”* ¢ new designs to take advantage
of synchrotron sources,27_3' surface-enhanced measure-
ments utilizing plasmonic nanorod antennas,’*** QCL-
based imaging instruments,>** polarimetric imaging‘MJ'8
and the emergence of hybrid techniques such as atomic
force microscopy-IR imaging,**® and photothermal
microscopy.®' ' Since many of these techniques are rapidly
developing and their capabilities may not all be geared
towards the chemical limit of detection, we focus this
study largely on well-established FT-IR and QCL micro-
scopes. These instruments still comprise a majority of
those in use and provide representative examples of inco-
herent and coherent sources for new technologies to com-
pare performance and improve upon. The two classes of
instruments also have another important difference — while
FT-IR spectrometers measure a continuous spectral band-
width, discrete frequency IR (DFIR) systems measure spe-
cific spectral data points. Given the trade-off between
measurement time and signal to noise ratio (S/N), this dif-
ference raises important questions. Several attempts have
been made to define IR imaging performance. For instance,
a detailed theoretical and experimental investigation of LoD
in attenuated total reflection sampling focused on pharma-
ceutical powder mixtures.®?> Other studies have focused on
the potential of IR imaging for high throughput secondary
structure analysis of proteins,®>®* the analysis of small
extracted volumes,®® and on related measurements such
as S/N — the discussions of which are plentiful.®®

Although this extensive body of work relates to the LoD,
there is not yet a report on systematically evaluating and
optimizing spectral analysis. VWe address this gap by develop-
ing and applying measures for pixel-wise LoD in IR spectro-
scopic imaging while examining underlying assumptions of
data distribution. Aiding characterization, we also evaluate
the possibility id using a decision theoretic approach for the
LoD as a special case of a classical binary classification prob-
lem — given a measurement spanning multiple discrete wave-
numbers, we evaluate a statistically viable methodology that
can be used to separate between two spectrally different
objects. Finally, experiments are reported to relate theor-
etical predictions to measurements using engineered micro-
arrays of bovine serum albumin (BSA).

Formulation of LoD as a Binary Classification Problem

For LoD determination, an average analyte concentration,
G, is typically estimated from an average measured signal, X.
Optimization of the measurement and analysis process to
achieve the lowest concentration as a LoD then involves



Bhargava et al.

maximizing the separation between a signal (xp) and a blank
(xg). As a binary classification problem,®’ the separation
parameter, k, is a quantitative measure of the ability to
separate these classes as
K Xp — Xg @)
c

where G is the standard deviation in the measurements. In
IR spectroscopy, this signal is the measured absorption
spectrum that directly relates to concentration via the
Beer-Lambert law. Consider the corresponding noise-free
spectra Sp(v;) and Sg(vj) where v; for j € {I,...,n} are the
spectral positions where data are sampled. Then,
Ap(v;)=Sp(v;) + oj and Ag(v;)=Sg(Vj) + o; are the rec-
orded absorbance, where o; is the corresponding spectral
standard deviations. Note that the ability to separate the
two signals is dependent on both maximizing the signal and
controlling or reducing noise in spectral analyses. Here we
consider three approaches — namely, using a single wave-
number absorbance, an average absorbance of specified
discrete wavenumbers (which may not be contiguous),
and a spectral distance — to derive Xp and xz. To generalize
the analysis, we will consider the impact of correlated and
uncorrelated noise for each of these cases to define G. A
summary of the analysis approaches and corresponding
selection algorithms is provided in Table | and each case
is briefly discussed next.

Single Wavenumber Absorbance (SWA): It can be
shown that k is optimized by picking the spectral position,

argmax; (Ap(v;)), where the analyte absorption is highest.
The optimal separation parameter, ko, is defined by

ko = (M) 3)

Gabs

Discrete Wavenumber Average Absorbance
(DWA): A wider range of spectral information can be
utilized by adding the signal at each spectral position. For
uniform and uncorrelated noise, an optimized k is then
defined as

§ <Z,~’l. (Ao(%) — As(¥ ))) @

ks = ma
Gabs - /M

where m denotes the spectral data optimized for the sum-
mation. For non-uniform and correlated noise, an optimal k
can be defined as

oy = i Bo®) — Ao%))
\/eril 0j2+2.§: i 5

()
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Spectral Distance (SDA): In binary classification, a
probabilistic approach compares the likelihood of a spec-
trum being either part of the sample or the blank. The
likelihood of a spectrum being part of the first class is
Ly =1, N(Ao(¥)ISp,o;) and the likelihood for the

Table I Overview of the different approaches and selection algorithms for the evaluation of LoD.

Mathematical

Approach

formulation for k

Selection algorithm

Description

Single wavenumber
absorbance, SWA

Discrete wavenumber
average absorbance,
DWA

Spectral distance ana-
lysis, SDA

ko = Ap—Ag

Oabs

ky = E (Ap—As)

R

k= /(Ao — Ap) G5 (Ap — Ap)

Highest absorbance,
SWA,

Best S/N, SWAg

Highest absorbance,
DWA,

Best improvement in S/
N, DWAg

Full available spectral
range, SDA

Selects wavenumber of the high-
est absorbance.

Selects wavenumber that yields
the highest S/N value.

Cumulatively adds the absorb-
ance at discrete spectral pos-
itions, ordered by decreasing
absorbance, to maximize
signal.

Adds signal at discrete wave-
numbers that yield the max-
imum improvement of k. For
uncorrelated, uniform noise,
the case of DWAy is
recovered.

Using the full recorded spectrum
for calculation of spectral
distance.




second class is £, = [, N'(Aa(¥;)|Ss, 0 ). Using a log like-
lihood ratio approach, this results in the Euclidean spectral
distance between blank and sample spectra. For uniform
and uncorrelated noise (G; = Gaps), k is optimized by

I o) — As(#)?
k=

Gabs

(6)

For non-uniform and correlated noise, the Mahalanobis
distance formulation provides an equivalent expression68

k. =/ (Ao() — As(%)C5' (An(¥)) — As(i))) @)

where C; denotes the corresponding covariance matrix.
The SDA is equivalent to a two class linear discriminant
analysis (LDA) approach when the prior probabilities for
the sample and blank are equal, with underlying multidimen-
sional normal distributions A(Sp,Cz) and N (S, Cz),
respectively. Two class LDA is known to perform a sub-
space projection that maximizes class separability, and
thus, minimizes the LoD.

Implementation of Selection Algorithms: For
both SWA and DWA, an optimal subset of spectral pos-
itions is determined. We propose two greedy algorithms —
the first is the simpler one, selecting the spectral positions
of highest absorbance from the ranked list. The second is a
best improvement selection (Algorithm | in Supplementary
Materials), which sequentially selects those spectral pos-
itions that maximize separation quality. These are indicated
in Table | with the subscripts H and B, respectively. For each
of these cases, we consider noise uniformity across the
spectral region and correlations in noise magnitude.
Under some circumstances, e.g., uniform, uncorrelated
noise, the results of SWA for both cases are the same.
For the spectral distance approach, we consider the avail-
able spectra without qualification.

Methods
Sample Preparation

Bovine serum albumin, a protein with dominant «-helix
structure and a well-known IR absorption spectrum, was
selected as a representative biomolecule. We fabricated a
BSA microarray, to facilitate high throughput and consistent
sampling, using a picoliter dispensing system.®>’° This plat-
form allows for nanoprinting of highly consistent spot sizes;
however, proteins such as BSA exhibit different solubilities
and hydrophilicities under different environments, and care-
ful attention to conditions is required for nanoplotting. We
tested a range of combinations of DI water and ethylene
glycol and selected a 50-50% mixture as best for optimized
spot sizes. BSA (Sigma Aldrich) was dissolved in this
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mixture at concentrations of 10, 5, 2, 1, 0.5, 0.2, 0.1 and
0.05 mg/mL. Microarrays were fabricated using Nanoplotter
2001 (Gesim) with a Nano-Tip A-] pipette head (Gesim)
that is designed to plot volumes of ~250 pL using piezo-
electric pipetting tips that can dispense an accurate volume
of a sample solution by applying a predefined voltage.
Optimizing parameters, a pulse width of 90 us and piezo
voltage of 105V was selected. Solutions were prepared
immediately before plotting and the spots were plotted in
an array with a spatial separation of 704 um to allow ima-
ging of one BSA spot per frame in our widefield FT-IR
imaging instrument. Eight replicate spots for each concen-
tration, each with a volume of ~2.8 nL, were plotted on a
clean 25 mm diameter, 2-mm-thick BaF, substrate (Spectral
Systems). For estimation of the actual dispensed volumes,
an integrated stroboscope camera-based image recognition
software was used. The microarrays were dried under
nitrogen until all the liquid evaporated; subsequently, they
were kept in a desiccator under vacuum for another 30 min
to remove residual ethylene glycol. Taken altogether, our
sample preparation procedure allows for the fabrication of
a microarray with fairly homogeneous within-spot concen-
tration and minimal coffee-ring effects.

IR Imaging and Data Analysis

The microarrays were imaged with a Cary 620 microscope
integrated with a Cary 670 spectrometer (Agilent
Technologies). Imaging was performed in a transmission
configuration with a 15x objective in standard magnifica-
tion mode using a liquid nitrogen-cooled 128 x 128 pixels
array mercury-cadmium-telluride (MCT) detector with
5.5 um pixel. Spectral images were acquired in a single
frame with spatial size of 704 um x 704 um. Spectra were
acquired using an undersampling ratio of 4 and a nominal
spectral resolution of 8cm™' using 64 coadditions. The
data were truncated to the detector response region for
analysis. A mosaic image of the BSA microarray comprises
8 x 8 frames. For the background, an empty area next to
the array was measured using the same spectrometer par-
ameters but with 128 coadditions. We also imaged the
microarray using a commercial FT-IR imaging system,
Perkin Elmer Spotlight 400 (Perkin Elmer, Waltham, MA)
equipped with a highly sensitive linear MCT detector array.
Images were acquired in transmission mode with a nominal
spectral resolution of 8cm™' and with 8/64 co-additions for
6.25, 25 and 50 um pixel sizes at line scan of | cm/s. A blank
area was used for background measurement with 120
scans. Perkin Elmer’s inbuilt atmospheric correction algo-
rithm was utilized to eliminate any interference effects from
CO; and H,0O vapor. We also imaged the microarray using
a custom-built scanning DFIR imaging system that has been
previously described.**** Measurements in transmission
configuration are enabled by using 0.85/0.71 NA and
12.7 mm EFL lens, and focusing the signal onto a cryogenic
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single-element MCT detector (MCT-13-0.5PV, InfraRed
Associates).

Data evaluation was performed in Python 3.8.5 with
functionalities of the Spectral Python package and other
custom procedures. A preprocessing step was performed
to subtract water vapor absorbance. Next, to reduce noise
(and maximize S/N), the images were processed using min-
imum noise fraction (MNF)”' built in Environment for
Visualizing Images Interactive Data Language (ENVI-IDL)
as applied previously to IR imaging. The noise characteris-
tics for MNF were estimated using seven empty frames that
were imaged (another was used for the frame-wise subtrac-
tion and therefore contains no information anymore). The
inverse transform was performed using only the first four
MNF components, which sums up to 90% of the total sum
of the eigenvalues. Before the final evaluation, a linear base-
line correction was performed. The same procedure was
followed for another data set without MNF correction.
After these post-processing steps, we plot the absorbance
at 1646 cm™', which allows visualization of the fabricated
TMA and allows segmentation of protein and blank regions.

Results and Discussion

Proteins are an important analyte for biomedical IR spec-
troscopy and imaging. Their Amide | and Amide Il vibra-
tional modes provide strong measurable signals as well as
rich information that is suited to our study. An image of the
fabricated microarray, obtained by plotting the baseline-
corrected absorbance of Amide | mode for eight replicates
of each concentration of BSA, is shown in Fig. la. The fab-
rication procedure provides for relatively uniform spots
and a significant number of pixels from which statistical
inferences may be drawn within and across replicates.
The format also allows a rapid and straightforward visual-
ization of detection capabilities. Mean sample spectra are

—
)
—

(b)

shown in Fig. Ib, and used to create the calibration curves.
Good spectral quality, with spectra that are relatively free
of distortions due to scattering or other optical effects, can
be obtained using the microarray. Normalization of the
spectra to account for concentration-dependent effects
reveals a shift in the Amide | peak of approximately
2cm™! in lower concentration samples, with insignificant
band shape changes. This is expected and likely arises due
to decreased hydrogen bonding. While spectral distortion is
negligible and not considered further, we do note that more
complex mixtures and spatial-morphological variations may
introduce significant changes in both band shapes and peak
locations. Violin plots of the measurements (Fig. Ic) help in
visualization of the variance within the samples and the dis-
tribution of the noise associated with measurements
around zero. Differences in the distribution are likely
from the cumulative effects of drying, concentration
dependent evaporation and spreading of droplets. Before
undertaking further analysis of this data, we develop our
analysis using simulated data and noise models.

Estimation by Simulations

We use the best-fit parametric approximations of recorded
data as estimates of Sp(V; ) and assess the influence of noise
(o) on our analysis. The preprocessed spectrum acquired
from the 10 mg/mL BSA concentration spot was used for
the approximation, as it offers the highest S/N and no sig-
nificant deviations from other concentrations in band shape
or normalized absorbance. Two different models for curve
fitting are implemented. The first is the simplest possible
model and uses two Gaussian bands — one for Amide | and
another one for Amide Il (Fig. 2a). The second model uses
nine Gaussian bands to fit the Amide | and Amide Il regions
(Fig. 2b) with centers of the bands chosen to correspond to
known secondary structures.”? The goodness of fit for each
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Figure |. Characterization of the fabricated microarray. (a) Absorbance of the Amide | (1646 cm™') vibrational mode used to visualize
BSA samples produced from solutions with concentrations from 0.05 to 10 mg/mL in a grid format. Each concentration has eight
columns corresponding to eight replicates. Scale bar is 500 pm. (b) Fingerprint-region absorption spectra show spectral variation with
concentration while (c) violin plots show the underlying distribution of absorbance at 1646 cm™" of all the pixels from frames with a
specific concentration. The two distributions separated by the dashed line correspond to the sample (top) and the blank (bottom),

respectively.



Applied Spectroscopy 0(0)

—
o
-

e o o 9
o N B O ® B

Norm. Absorbance

1500

1700 1600

Wavenumber (cm?)

B Empirical Data ™ Amide | Fit M Amide Il Fit M Gaussian Fit

(a)
1 -
8
0.8}
©
O
0.6}
8
<04}
=
5021
=
0 i i i
1700 1600 1500
Wavenumber (cm™)
(c)
1

M Single Gaussian DWA
d B Multi-Gaussian DWA
M Single/Multi-Gaussian SDA

Norm. Separation Quality
© ©o o o
o N iy (=2} co

20 40
Number of Averaged Bands

60

o

=)
=

Norm. Absorbance

Lo e o
o N B o B B

1600
Wavenumber (cm™)

1700 1500

Figure 2. Gaussian fits using (a) a single curve each for Amide | and Amide Il bands and (b) nine curves, with Amide | fits shown in
orange and Amide Il fits in blue, respectively. (c) Normalized separation quality with DWA for different spectral subsets: blue showing
single Gaussian case, purple showing multiple-Gaussian case and red showing the SDA case in the 1480—1710cm™' region. The
separation quality predicted by the SDA approach is so similar for both models that only one line is depicted. (d) Selection of discrete
wavenumbers that yields the optimal separation quality using DWA.

is quantified with a coefficient of determination, RZ, show-
ing a good fit with values of 0.989 and 0.999 for the two
models, respectively. These different models were con-
sidered to simulate slight differences in the sample spectra
that could arise from secondary structure changes or the
described peak shift from hydrogen bonding effects. Note
that our goal here is not to find the precise fit to the BSA
spectrum but gauge the effects of various noise models on
the LoD prediction.

Uniform and Uncorrelated Noise: To evaluate the
spectral analysis methods in LoD determination, we first
consider uniform, uncorrelated noise. A comparison of
the analyses is shown in Fig. 2c. Similar results are obtained
using SDA and DWA. This similarity implies that minor
changes in the band shape, for instance, arising from differ-
ent secondary structures,” hydrogen bonding,”‘75 or opti-
cal effects in IR imaging,’®’” do not severely influence
calculations, though it may complicate multicomponent ana-
lyses. To easily compare the relative performance of ana-
lyses, we normalize each assessment of separation quality k
to the value obtained using SDA. We observe that for SWA,
the normalized separation quality is ~26%, whereas it is
~91% for DWA with the best subset of discrete spectral
points. This is expected as the total signal of averaging
uncorrelated measures of the same species increases with

the cumulative absorbance whereas noise increases propor-
tional to /n; thus, the benefits of averaging a spectral band-
width are realized until AA > +/n+ |. This implies that
the optimal averaging range is dependent on band shape
and will need to be optimized for specific studies. Here,
the optimal averaging subset consists of 37 spectral bands
and can be visualized in Fig. 2d. Note that the separation
quality is not highly dependent on small changes in the
number of spectral bands but is a fairly strong cumulative
effect. It is consistent with the expectation that larger band-
widths and higher resolution (for the same S/N) offer both
statistical and interpretation advantages that come at a cost
defined by the well-known trading rules in IR spectros-
copy.”® For non-uniform noise sources such as QCLs, the
same approach can be used to optimize spectral averaging
subsets for the specific case.

Non-Uniform and Correlated Noise: The presence
of non-uniform and correlated noise can be observed in
data recorded with a fluctuating background (e.g., from
water vapor), from apodization or zero-filling in time
domain or from correlated detector responsivity. We
model correlated noise by

A;) = Sp(¥) + or ®
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where o1 = 612 + ow(Y; ). o; is the uniform noise con-
tribution and G,,(v;) denotes the noise term due to water
vapor. To compare recorded data to simulations, we set
max; Gy, (Vj) to 2- Gaps. Under this assumption, the total
noise does not remain constant over the entire spectral
region, as shown in Fig. 3, and noise covariance can be

calculated as

Cov(G v (V), cva(‘_'j ) = ow (V) - cwi(vj )-p 9

The simulated effect of correlated water vapor contri-
butions (p=1) can be seen in Fig. 3b. The diagonal elem-
ents quantify absorbance variance at each spectral position
and the off-diagonal elements provide covariances. This
visualization allows us to rapidly assess the potential
impacts of any correlated perturbations and can serve as
a strategy to examine any assumptions of the underlying
noise structure. Note the consideration of the noise
covariances poses a certain intricacy in calculation of the
separation factor using the DWA approach. The time
domain interferogram data acquired on FT-IR spectrom-
eters typically undergo a number of signal processing
steps that may induce correlation between the spectral
measurements in the frequency domain. Apodization and

(a) (b)

Absorbance
o
Wavenumber {em™)
[y
o
=)
<}

zero-filling, under certain conditions,”” can result in meas-
urements that are correlated as well as change the magni-
tude of noise. Next, we analyze the effect of noise models
on separation quality to compare the performances of
SWA,, and DWAy approaches and the SDA in Fig. 3c. As
expected, uniform and uncorrelated noise shows the best
separation quality, with a normalized separation quality of
~100% and ~93%, respectively. Non-uniform noise shows
lower separation quality in comparison. For non-uniform,
uncorrelated noise, SDA and DWA, both provide a close
relative performance of ~73% and ~65%, respectively. For
non-uniform correlated noise, a relative performance of
only ~44% and ~26% for the SDA and the DWA,
approaches is achieved, respectively. Key conclusions from
this simulation are that the noise characteristics have sig-
nificant influence on the LoD, in the worst case leading to a
~fourfold decrease in normalized separation quality.
Moreover, the optimal spectral subset for the averaging is
highly dependent on correlation and non-uniformity in the
spectral noise. Fully uncorrelated noise in measurements is
rare, for example, as seen in data recorded from a purged
system here and the impact of correlated noise should be
considered. This noise model can be applied to analyze
other specific situations where the source or detector
may have  wavelength-dependent characteristics.
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Figure 3. Comparison of simulation with observations. (a) Total simulated noise content in the IR spectra with contributions from
non-uniform water vapor absorption and uniform spectral noise. (b) Corresponding estimated noise covariance matrix for the non-
uniform and highly correlated spectral noise model. (c) Normalized separation quality for three different cases of simulated noise,
namely, uniform (uncorrelated), non-uniform (uncorrelated) and non-uniform (correlated) is shown in bold lines (DWAR). SDA using
the log likelihood ratio is shown in dashed lines for the respective cases. (d) Experimental data showing noise effects from water vapor
absorption. (e) Noise covariance matrix showing weakly correlated spectral dependence. (f) Estimated LoD concentration plots for two
different wavenumber selection methodologies, i.e., highest absorbance (SWAy,, DWA)) and best improvement selection (SWAg,
DWAg), before and after performing MNF correction on the data. The optimal subset of wavenumbers are marked for both the cases

before MNF correction.



In particular, non-uniform noise becomes increasingly
important for discrete frequency measurements as well.

Experimental Validation

We validate simulations with data acquired from imaging a
BSA microarray. We first estimate the blank values for dif-
ferent analysis approaches, followed by predicting the
detection limit using a calibration function and validation
with the known concentrations of the array.

Estimating Blank Values: Estimated standard devi-
ation, Gj, were recorded using a blank region of the micro-
array (7744 pixels), with care to ensure that there were
also no contaminating dust or other deposits (Fig. 3d). The
spectral region with increased noise level suggests the influ-
ence from atmospheric water vapor with noise covariance
visualized in Fig. 3e. Aside from the non-uniform standard
error at every wavenumber, only a slight correlation in the
spectral noise is apparent. While strong spatial atmospheric
fluctuations would provide a highly structured noise covari-
ance matrix as simulated in Fig. 3b, the absence of the non-
diagonal water vapor related elements in the experimental
data of Fig. 3e indicates that the spectrally non-uniform
noise might just be due to differential signal attenuation
by atmospheric species. Unsurprisingly, purging the instru-
ment will lead to lower variation and lower noise but the
analysis here shows that the typical measurement noise is
impacted by atmospheric contributions in a well-purged
instrument.

Estimating the LoD Concentration: We first
develop a calibration curve using absorbance at high con-
centrations (10, 5, 2 and | mg/mL) since the impact of noise
is smaller. Lower concentrations are used for validation,
since those are closer to the limits of the instrument.
The standard deviation for each concentration is computed
using all pixels from the eight replicates. The LoD is first
calculated using the simple threshold of A; =36;. We
report our measurements in concentrations as they are
intuitively understandable and commonly adopted; how-
ever, a mass LoD can also be calculated. It is also important
to emphasize that we do not aim to describe means to
maximize the analyte concentration through sample prep-
aration techniques such as a longer path length or pre-
concentrating the solution, but we discuss approaches to
strategically and efficiently analyze the data.

First, we use SWA to calculate the LoD. The optimal
wavenumbers picked by SWAy, and SWAg are 1646 cm™"
and 1654 cm™', yielding LoDs of 0.32 mg/mL and 0.27 mg/
mL (Fig. 3f), respectively. The DWAy and DWAg proced-
ures choose |3 and 10 discrete wavenumbers (dashed lines
in Fig. 3f) with LoDs of 0.22 mg/mL using both the methods.
Interestingly, the DWAg selection provides a significantly
lower LoD for a small humber of selected wavenumbers,
but overall, this did not result in better LoD in the best
selected subset. We assess use of SDA by first averaging all

Applied Spectroscopy 0(0)

the pixels from the 10 mg/mL spots, which gives us an esti-
mation of Sp(v;). An LoD of 0.16 mg/mL is estimated from
these data as the concentration where the Mahalanobis
distance of the class spectra equals 3. For the calculation
of the Mahalanobis distance, it is necessary to compute the
inverse of the noise covariance matrix, which becomes an
increasingly complex problem for highly correlated noise
with resulting multicollinearity. This problem is typically
resolved by regularized computation of approximate pseu-
doinverse of such matrices.

Denoising techniques in post-processing have been used
to improve data quality®®®' and are expected to result in an
improved LoD. The MNF transform has been used previ-
ously as an effective means to reduce noise. Even though
these techniques result in spectra that are visually more
appealing they cannot alter the inherent uncertainty of
the spectral information. Water vapor correction per-
formed before MNF transformation is recommended. So
that the variance of water vapor does not affect the prin-
cipal components used for spectral reconstruction. The
alternate approach is compared in Supplementary
Material Fig. SI. The net result of MNF treated data is
that the LoD is 0.079 mg/mL for SWA and only slightly
affected by averaging, resulting in a LoD of 0.075 mg/mL
for the best subset from DWAg_ Surprisingly, the LoD pre-
dicted using DWAg or SWA; after MNF correction is lower
than that achieved using SDA. Methods such as principal
component analysis (PCA) or MNF already exploit the
entire spectral information during the projection onto the
lower-dimensional subspace. The concentration-signal LoD
curves before and after MNF are shown in Fig. 4. The clas-
sification results with these approaches, using a decision
boundary is depicted in Fig. S2. We also calculate the
mass equivalent for LoD of 0.075 mg/mL and it corresponds
to 216 pg of mass spotted for spot volume of 2.7 nL.
Assuming each spot size spans approximately 1928 pixels,
the mass spotted per pixel is |12 fg/pixel, which also cor-
responds to |.7 atto-moles of BSA per pixel. While the
linear relation between concentration and absorbance is
strictly valid for the integrated band area, in the depicted
LoD curves, the concentration is derived. Differences in
the slope of the curves arise, from the dependence of the
slope on the average absorbance of the subset.

Statistical Validation: In addition to single pixel meas-
ures, we compare the distributions (blank and standard) to
expected distributions (Fig. 5) from a model of Gaussian
noise for both SWA,, (Fig. 5a) and DWAg (Fig. 5b). While
data follows the predicted distributions at low concentra-
tion, a broadening is seen for higher concentrations that
likely arises from within-spot heterogeneity in thickness.
SDA is based on decision theory such that likelihood func-
tion or spectral distance between the sample and blank
classes, is maximized with an assumed noise model. Thus
a spectral distance of zero implies equal likelihood of a
spectrum being a part of the sample class Sp(v;) or the
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Figure 4. Comparison of concentration-signal curves obtained with DWAg before and after MNF correction for a widefield FT-IR
imaging spectrometer. Also shown are data obtained with DWAg for representative imaging spectrometer, namely, line-scanning FT-IR
system. Inset plot shows magnified region near the detection limits. LoD can be interpreted as the x-intercept of the vertical lines
projected from the calibration curve such that the horizontal lines correspond to three times the standard deviation (99.73% confidence
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blank class S(v;). For the MNF transformed data, the dis-
tributions of the blank and sample measurements using
SWA, (Fig. 5d) show that the separations indicate an
improved LoD. Thus, having a good understanding of the
system noise characteristics helps us in pushing the detec-
tion limits beyond those calculated from recorded data.

The noise model that best describes experimental FT-IR
data is non-uniform and correlated, which should be
assumed for LoD optimizations. With DFIR imaging becom-
ing more popular, the noise characteristics of each instru-
ment should be considered while remembering that a poor
choice of the set of discrete frequencies to scan may result
in an inferior performance. In general, non-uniform and
correlated noise in laser sources inspires us to consider
covariance matrices for the characterization of noise,
because of their comprehensiveness in comparison to
simple metrics like RMSE or peak-to-peak noise. In practical
applications, further, a 100% line of FT-IR data is not com-
parable to a 100% line from DFIR data. Apodization and
other signal processing techniques in FT-IR data will transfer
a fraction of the noise into covariance that cannot be visua-
lized simply by a 100% line. Further, comparisons of differ-
ent spectral selection procedures further indicates that not
all the spectral information is necessary to reach an excel-
lent LoD and DFIR instruments cannot automatically be
considered inferior in performance. Similarly, wide band-
width FT-IR spectroscopy may not always be superior.
DFIR systems, where the imaging time is directly propor-
tional to the number of frequencies imaged, hardware
innovations such as balanced detection, and optimal fre-
quency selection all provide yet untapped opportunities
improve the detection limits of DFIR systems.

As representative examples, we compare the perform-
ances of two instruments, first, a line scanning FT-IR
instrument equipped with a linear array. The predicted
LoD is 0.12mg/mL for the smallest pixel size at typical
scanning parameters and 0.008 mg/mL for the represen-
tative DFIR system. While we have presented typical per-
formance for several imaging systems, the trading rules of
IR spectroscopy’® should be carefully considered in com-
parisons of performance. Notably, the scan times for
widefield staring systems are larger though the number
of pixels acquired is also larger. Normalizing for pixel
rate, while accounting for pixel size and at constant S/
N, is a better comparison of relative performance.
Obviously, the predicted LoD depends significantly on
the pixel sizes and acquisition times (co-additions). Our
goal was not to compare performance of systems but to
show that a reasonably low LoD could be obtained by
modern IR imaging instrument. This LoD is obviously
poorer than state of the art bulk spectral measurements
by several orders of magnitude, which cannot provide
spatially resolved data and typically measure orders of
magnitude larger volume of material, as well as those
methods specifically designed to provide ultrasensitive
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measurements, such as using plasmonic substrates to
provide signals from small, localized volumes. However,
for unenhanced measurements within spatially heteroge-
neous structures, IR imaging easily provides measure-
ments in the biomedically relevant physiologic range of
mM to uM concentrations.

Conclusions

This study undertakes a quantitative characterization of the
detection ability of typical measurements in IR imaging. We
propose methods to analyze FT-IR and DFIR data and con-
sider suitable spectral analyses with a simultaneous consid-
eration of noise. The typical IR imaging measurement was
found to have a LoD in the mg/mL range for typical meas-
urements, which can be improved by invoking the trading
rules of spectroscopy. The effects of correlated and non-
uniform noise characteristics on measurements is observed
and recommended for IR imaging data. We also demon-
strate that minor changes in the band shape have only a
negligible influence on separation quality. While comparing
different spectral analysis methods, calculating spectral dis-
tances is not necessarily preferable to simple averaging.
Finally, post-processing techniques can improve the LoD
to less than 100 pg/mL. This study provides a means to
characterize and optimize LoD calculations for IR imaging,
while providing experimental validation using a BSA micro-
array to represent typical biomedical samples. These meth-
ods can be useful in assessing and optimizing the
performance of existing and emerging IR imaging
instruments.
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